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Abstract. The form factors of the light pseudoscalar mesons are investigated in a dispersive formalism
based on hadronic unitarity, analyticity and the OPE expansion of the QCD Green functions. We pro-
pose generalizations of the original mathematical techniques, suitable for including additional low energy
information provided by experiment or Chiral Perturbation Theory (CHPT). The simultaneous treatment
of the electroweak form factors of the π and K mesons allows us to test the consistency with QCD of a
low energy CHPT theorem. By applying the formalism to the pion electromagnetic form factor, we derive
quite strong constraints on the higher Taylor coefficients at zero momentum, using information about the
phase and the modulus of the form factor along a part of the unitarity cut.

1 Introduction

Chiral perturbation theory [?] provides a systematic low
energy expansion of the QCD Green functions in the sec-
tor of light mesons. Calculations up to two loops were done
recently for the scattering amplitudes and the electroweak
form factors in the chiral SU(2)×SU(2) limit [?]-[?]. A full
O(p6) SU(3) × SU(3) calculation was also performed [?]
for a specific combination of form factors which does not
involve arbitrary renormalization constants. The result al-
lowed to estimate the symmetry breaking corrections to a
low energy theorem proposed by Sirlin [?], which general-
izes the Ademollo-Gatto theorem [?].

The fundamental properties of causality and unitarity
are important ingredients in CHPT. Dispersion relations
for scattering amplitudes and form factors or their inverses
were used in performing low order calculations [?], [?], or
as a method of effective resummation of the high order
terms [?], [?]. In the present paper we shall consider an
alternative dispersive method suitable especially for form
factors [?],[?], which uses as input an information about
the modulus along the unitarity cut, leading to constraints
on the values inside the analyticity domain. The technique
was for the first time combined with the OPE expansion of
a QCD polarization function in [?]. Recently, this formal-
ism was successfully applied to the form factors describ-
ing the weak semileptonic decays of heavy mesons [?]-[?].
Quite strong constraints on the shape of these form factors
near zero recoil have been obtained by combining the dis-
persive formalism with the predictions of the heavy quark
effective theory (HQET) [?], [?]. The predictive power of
the technique was considerably increased [?], [?], [?] by the
simultaneous treatment of several form factors with differ-
ent unitarity thresholds, connected among them near zero
recoil by HQET.

It is of interest to apply this formalism to the form
factors of the light pseudoscalar mesons, for which chiral
symmetry predicts definite correlations for certain kine-
matical points. A first investigation of the weak form fac-
tors of the K → πlν decay in this framework was per-
formed in [?]. Similar techniques were applied in [?] in
order to parametrize the modulus of the pion electromag-
netic form factor in the time like region. In the present
paper we perform an analysis of the electromagnetic and
weak form factors of the π and K mesons, with emphasis
on their low energy expansions. The purpose of the inves-
tigation is to see whether the dispersive approach is useful
for testing the rigorous predictions of chiral symmetry and
for constraining the free parameters of CHPT. To this end
we present generalizations of the standard technique suit-
able for incorporating additional information provided by
experiments or CHPT.

The paper is organized as follows. In the next section
we review the dispersive formalism: first we present the
form factors of interest and some of their properties, then
we describe the physical input of the method and the stan-
dard mathematical techniques used for optimally exploit-
ing this input. In Sect. 3 we illustrate the simultaneous
treatment of several form factors with different unitarity
branch points by performing a test of a low energy the-
orem of CHPT. In Sect. 4 we derive constraints on the
Taylor coefficients at zero momentum of the pion electro-
magnetic form factor. We first give the simple unitarity
bounds obtained from the standard formalism and then
show how they are improved using additional information
on the phase and the modulus of the form factor along
a part of the unitarity cut. In the last section we present
some conclusions.
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2 Review of the dispersive formalism

2.1 Definitions and notations

We consider the electromagnetic form factors of the π and
K mesons, defined as

〈π+(p′)|Jelm
µ |π+(p)〉 = (p+ p′)µFπ(q2)

〈K+(p′)|Jelm
µ |K+(p)〉 = (p+ p′)µFK+(q2)

〈K0(p′)|Jelm
µ |K0(p)〉 = (p+ p′)µFK0(q2) , (1)

and the form factors describing the weak semileptonic de-
cay K → πlν:

〈π0(p′)|Jw
µ |K+(p)〉 = (p+ p′)µf

(+)
πK (q2)

+(p− p′)µf
(−)
πK (q2)

=
(
qµ − q · p

q2
Pµ

)
fπk(q2)

+qµdπk(q2) , (2)

where q = p− p′, P = p+ p′ and Jelm
µ (Jw

µ ) is the electro-
magnetic (weak) current:

Jelm
µ =

2
3
ūγµu− 1

3
d̄γµd− 1

3
s̄γµs , Jw

µ = s̄γµu . (3)

The form factors defined in (??) and (??) are analytic
functions of real type in the complex plane t = q2 cut
along the real axis from the threshold of two particle pro-
duction to infinity. The cut starts at tπ = 4m2

π for the
electromagnetic form factors Fπ(t) , FK+(t) and FK0(t),
and at tπK = (mπ + mK)2 in the case of the weak form
factors dπK(t) and fπK(t). At t = 0 the conservation of the
electromagnetic current and the Ademollo-Gatto theorem
[?] give

Fπ(0) = 1 , FK+(0) = 1 , FK0(0) = 0 ,
dπK(0) = (m2

K −m2
π)fπK(0) , fπK(0) = 1 . (4)

If we define the function

∆(t) =
1
2
Fπ(t) +

1
2
FK+(t) + FK0(t) − fKπ(t) , (5)

from (??) it follows that

∆(0) = 0 . (6)

This relation is valid up to terms quadratic in the chiral
symmetry breaking parameters [?]. The Ademollo-Gatto
theorem was extended by Sirlin [?] to values t 6= 0 near the
origin. Sirlin’s theorem requires in particular the vanishing
of the derivatives of the function ∆(t) at t = 0:

∆′(0) = 0 , ∆′′(0) = 0 , .... (7)

In CHPT the renormalization constants cancel in the com-
bination of the form factors entering Sirlin’s function. A

recent O(p6) calculation in full chiral SU(3)×SU(3) per-
turbation theory gave the value [?]

∆′(0) =
1
6
r2S = (0.0033 ± 0.0005) fm2 , (8)

where r2S is the ”charge radius” of the Sirlin’s form factor
[?]. This result shows explicitely the breaking symmetry
correction to Sirlin theorem (??).

2.2 Unitarity and dispersion inequalities

Dispersive bounds on the above form factors are obtained
by considering the vacuum polarization tensor :

i

∫
dxeiqx〈0|T (J†

µ(x)Jν(0))|0〉
= (qµqν − gµνq

2)Π(q2) + gµνD(q2) , (9)

where Jµ denotes either the electromagnetic Jelm
µ or the

weak Jw
µ current (the function D(q2) vanishes in the elec-

tromagnetic case). From the asymptotic behaviour of
QCD it follows that the derivative Π ′(q2) of the ampli-
tude Π(q2) satisfies the dispersion relation

Π ′(q2) =
1
π

∞∫
0

ImΠ(t+ iε)
(t− q2)2

dt , (10)

with the spectral function ImΠ(t+ iε) given by hadronic
unitarity. Using the definitions (??) of the electromag-
netic form factors and taking into account the positivity
ImΠ(t+ iε) ≥ 0, we obtain the inequality:

ImΠelm(t+ iε) ≥ 1
48π

(
1 − tπ

t

)3/2

|Fπ(t)|2θ(t− tπ)

+
1

48π

(
1 − tK

t

)3/2 [|FK+(t)|2 + |FK0(t)|2]
×θ(t− tK) , (11)

where tπ = 4m2
π and tK = 4m2

K are unitarity branch
points. By inserting the inequality (??) in the dispersion
relation (??) for an euclidian point q2 = −Q2 < 0 we
obtain:

Π ′
elm(−Q2) ≥ 1

48π2

∞∫
tπ

dt
(t+Q2)2

(
1 − 4m2

π

t

)3/2

|Fπ(t)|2

+
1

48π2

∞∫
tK

dt
(t+Q2)2

(
1 − tK

t

)3/2

× [|FK+(t)|2 + |FK0(t)|2] . (12)

A relation similar to (??) can be written for the polar-
ization function Πw(Q2) of the weak current. Using the
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definition (??) we obtain from unitarity and positivity

ImΠw(t+ iε) ≥ η

48π

(
1 − tπK

t

)1/2
(

1 − t
(−)
πK

t

)1/2

×
[(

1 − tπK

t

)(
1 − t

(−)
πK

t

)
|fπK |2 +

|dπK |2
t2

]

×θ(t− tπK) , (13)

where tπK = (mK +mπ)2, t(−)
πK = (mK −mπ)2 and η = 3

2
is an isospin factor [?]. By inserting (??) in a dispersion
relation of the form (??) we obtain

Π ′
w(−Q2) ≥ η

48π2

∞∫
tπK

dt
(t+Q2)2

×
(

1 − tπK

t

)1/2
(

1 − t
(−)
πK

t

)1/2

×
[(

1 − tπK

t

)(
1 − t

(−)
πK

t

)
|fπK(t)|2

+
|dπK(t)|2

t2

]
. (14)

It is interesting to note that the inequalities (??) and (??)
can be added, leading to a single inequality

Π ′(−Q2) ≥ 1
48π2

∞∫
tπ

dt
(t+Q2)2

(
1 − 4m2

π

t

)3/2

|Fπ+(t)|2

+
1

48π2

∞∫
tK

dt
(t+Q2)2

(
1 − tK

t

)3/2[|FK+(t)|2 + |FK0(t)|2]

+
η

48π2

∞∫
tπK

dt
(t+Q2)2

(
1 − tπK

t

)1/2
(

1 − t
(−)
πK

t

)1/2

×
[(

1 − tπK

t

)(
1 − t

(−)
πK

t

)
|fπK(t)|2 +

|dπK(t)|2
t2

]
, (15)

where

Π ′(−Q2) = Π ′
elm(−Q2) +Π ′

w(−Q2) . (16)

In the euclidian region Q2 > 0, the functions Π ′
elm(−Q2)

and Π ′
w(−Q2) can be calculated by applying renormaliza-

tion group improved perturbative QCD, with nonpertur-
bative corrections included by means of operator product
expansions (OPE). We used the expressions given in [?]:

Π ′(−Q2) =
(

1
6

+
1
4

)
1

π2Q2

[
1 +

αs(−Q2)
π

+F3

(
αs(−Q2)

π

)2

+
(
F4 +

β2
1π

2

12

)

×
(
αs(−Q2)

π

)3
]

−
(

1
6

+
3
4

)
1

π2Q4m
2
s(−Q2)

+
(

1
18

+
1
12

)
1
Q6 〈αs

π
ḠG〉

+
(

10
9

+ 1
)

1
Q6mq〈ψ̄ψ〉 , (17)

corresponding to nf = 3 flavours. The first and the sec-
ond numerical constant in front of each term indicate the
separate contribution of Π ′

elm(−Q2) and Π ′
w(−Q2), re-

spectively. To evaluate these quantities we used the two-
loop expressions of the running coupling αs(−Q2) and
the running mass ms(−Q2) of the s-quark [?], the per-
turbative parameters F3 = 1.6398 , F4 = −10.2839 , β1 =
−9/2 [?] and the condensates mq〈ψ̄ψ〉 = (0.200 GeV)4
and 〈αsḠG〉/π = (0.45 GeV)4 [?]. As concerns the value
of the euclidian point Q2 at which we calculate the po-
larization amplitude, it must be on one hand high enough
to ensure the validity of the OPE expansion, and on the
other hand small enough to provide a strong constraint
on the form factors through the dispersion relation (??).
In fact, the results turn out to be rather stable when Q2

is varied in the range 2 GeV2 ≤ Q2 ≤ 6 GeV2. The re-
sults reported in this work are obtained with the choice
Q2 = 2 GeV2, for which Π ′

elm(−Q2) = 0.009546 GeV−2

and Π ′
w(−Q2) = 0.0133 GeV−2. With the l.h.s. of the re-

lations (??), (??) or (??) known, these inequalities are
integral conditions for the sum of the moduli squared of
the corresponding form factors.

It is useful to point out that an alternative integral
condition for the electromagnetic form factors can be ob-
tained by using as input, instead of OPE in the euclidian
region, a lower bound on the hadronic muon anomaly. This
method was first proposed in [?], and starts from the the
vacuum polarization contribution of the hadronic part of
the muon anomaly

a(h)
µ =

1
π

∞∫
0

dt
t

ImΠ(t+ iε)K(t) , (18)

where

K(t) =
α

π

1∫
0

z2(1 − z)
z2 + (1 − z)t/m2

µ

dz . (19)

By introducing (??) in the unitarity relation (??) we ob-
tain the inequality

a(h)
µ ≥ 1

48π2

∞∫
tπ

K(t)
t

(
1 − 4m2

π

t

)3/2

|Fπ+(t)|2dt

+
1

48π2

∞∫
tK

K(t)
t

(
1 − 4m2

K

t

)3/2

×[|FK+(t)|2 + |FK0(t)|2]dt , (20)

which restricts the electromagnetic form factors along the
unitarity cut. In the calculations we adopted the conser-
vative lower bound a

(h)
µ ≥ 7.5 × 10−8 [?], based on the
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experimental value, the weak radiative corrections and an
estimate of the hadronic box diagram.

2.3 Standard mathematical techniques

In this subsection we briefly review the standard tech-
niques for exploiting in the optimal way the conditions
(??), (??), (??) or (??) in order to obtain constraints on
the form factors and their derivatives inside the analytic-
ity domain. It is useful to introduce a compact notation,
defining the form factors Fi(t) , i = 1, .. , 5 as

F1(t) = Fπ(t) , F2(t) = FK+(t) , F3(t) = FK0(t)
F4(t) = fπK(t) , F5(t) = dπK(t) , (21)

and denoting by ti the unitarity branch points:

t1 = tπ , t2 = tK , t3 = tK ,

t4 = tπK , t5 = tπK . (22)

We now apply to each integral with the lower limit ti
appearing in the conditions (??), (??), (??) or (??) the
following conformal mapping

z(t) =
√
ti − t− √

ti√
ti − t+

√
ti
. (23)

By this transformation the complex t plane is mapped
onto the unit disk in the complex plane z, such that z(0) =
0 and the unitarity cut t ≥ ti becomes the boundary |z| =
1. For simplicity we denote Fi(z) = Fi(t(z)), where t(z)
is the inverse of the mapping z(t) . Then the conditions
(??), (??), (??) or (??) can be written in the canonical
form:

1
2π

I∑
i=1

2π∫
0

|wi(ζ)Fi(ζ)|2dθ ≤ 1 , ζ = exp(iθ) , (24)

where I = 3 or I = 5. In (??) wi(z) are analytic functions
without zeros inside the unit disk, their modulus square on
the boundary are equal to the weight functions appearing
in front of the form factors, multiplied by the Jacobian of
the conformal mapping (??). In mathematical books these
functions are called ”outer functions” and are defined in
terms of their modulus on the boundary as [?]

wi(z) = exp


 1

2π

2π∫
0

ζ + z

ζ − z
ln |wi(ζ)|dθ


 , ζ = exp(iθ) .

(25)
In our case the functions wi(z) have simple explicit expres-
sions [?]-[?]. For the global condition (??) which involves
all the form factors, the outer functions wi(z) are

wi(z) =
(1 − di)2

16

√
1

6πtiΠ ′(−Q2)
(1 + z)2

√
1 − z

(1 − zdi)2
,

i = 1, 2, 3 , (26)

w4(z) =
(1 − d4)2

32(1 − z−)3/2

√
η4

6πt4Π ′(−Q2)

× (1 + z)2
√

1 − z(1 − zz−)3/4

(1 − zd4)2
,

w5(z) =
(1 − d5)2

32t5(1 − z−)5/2

√
η5

2πt5Π ′(−Q2)

× (1 + z)(1 − z)5/2

(1 − zz−)1/4(1 − zd5)2
, (27)

where

di =

√
ti +Q2 − √

ti√
ti +Q2 +

√
ti
, i = 1, .. , 5 , (28)

and

z− =

√
tπK − t

(−)
πK − √

tπK√
tπK − t

(−)
πK +

√
tπK

. (29)

For the alternative condition (??) the functions wi(z) are
replaced by:

wi(z) =
1
16

√
1

6πtia
(h)
µ

(1 + z)2
√

1 − z wK(z) ,

i = 1, 2, 3 , (30)

where wK(z) is an outer function defined as in (??) in
terms of its modulus |wK(ζ)| =

√K(ζ) on the boundary.
The inequality (??) is a standard boundary condition

in L2 norm for the functions Fi(z) [?], from which one
obtains constraints on the size and shape of these func-
tions at interior points. The results are expected to be
stronger if one keeps in (??) the contributions of all the
functions Fi(z) and exploits in addition the correlations
among them provided by symmetries at some kinemat-
ical points. This technique proved to be very useful in
the case of the weak form factors of heavy mesons, using
HQET near zero recoil. In principle, a difficulty in apply-
ing the formalism to the excited states is the presence of
the unphysical cuts below the unitarity branch points. In
the case of heavy mesons, the unphysical cuts are well ap-
proximated by a few narrow resonances of known masses,
which can be treated by adequate techniques with no as-
sumption about the residua [?]-[?]. As we shall see in the
next section, the situation is more complicated in the case
of the light mesons.

3 Test of a CHPT low energy theorem

In applying the relation (??) we recall that the functions
F1, F4 and F5, i.e. the electromagnetic form factor of the
pion and the weak form factors are analytic below their
unitarity branch points, while the kaon electromagnetic
form factors, denoted here as F2 and F3, have an unphys-
ical cut along the region tπ < t < tK , below the unitarity
threshold of the KK̄ production. In the variable z this
cut is placed inside the unit disk |z| < 1, along the seg-
ment −1 < z < z0, where z0 denotes the image of the two
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pion production threshold by the conformal transforma-
tion (??) for the kaon form factors:

z0 =
√
tK − tπ − √

tK√
tK − tπ +

√
tK

. (31)

The dispersive formalism can be applied to this case only
if some assumptions about the unphysical cut are adopted.
For instance, if the phase of the kaon form factors along
the unphysical cut is supposed to be known, the problem
can be treated by means of a suitable modification of the
standard techniques. Then one can use the inequalities
(??) or (??) to correlate the low energy expansions of the
electromagnetic and weak form factors or to test some
predictions of chiral symmetry.

In this section we will illustrate the procedure by test-
ing the consistency of the relations (??) proposed by Sir-
lin [?], with the requirements of unitarity and perturba-
tive QCD introduced in the condition (??). We adopt
for the phase of the kaon electromagnetic form factors a
model similar to the one proposed in [?] for the pion form
factor, and generalized to include a narrow ω resonance,
with the SU(3) relation Cρ = 3Cω between the residua.
We assumed therefore that the phases of the form factors
FK+(t + iε) and FK0(t + iε) along the unphysical region
are

δFK+ (t) = arctg
[

3mρΓρ(t)
4(m2

ρ − t)

]
, tπ < t < tK (32)

and

δFK0 (t) = arctg
[

3mρΓρ(t)
2(m2

ρ − t)

]
, tπ < t < tK . (33)

We used the ρ width Γρ(t) given by the resonance chiral
effective theory [?], [?]:

Γρ(t) =
mρt

96πf2
π

(
1 − 4m2

π

t

)3/2

, (34)

where fπ = 93.1MeV is the pion decay constant.
We shall use now the information on the phase in or-

der to remove the unphysical cut of the kaon form factors.
To this end we shall use a so-called Omnès function [?],
which exactly compensates the known phase of the form
factors along this part of the cut, leaving us with functions
analytic below the unitarity threshold. In what follows we
describe briefly the method. Since we treat all the form
factors simultaneously it is convenient to introduce a col-
lective notation, defining

Oi(t) = 1 , i = 1, 4, 5 ,

Oi(t) = exp


 t
π

∞∫
tπ

δi(t′)
t′(t′ − t)

dt′


 , i = 2, 3 , (35)

where the functions δi(t) are defined as δ2(t) = δFK+ (t),
δ3(t) = δFK0 (t) for tπ ≤ t ≤ tK , and are extended for
t > tK as Lipschitz continuous functions [?]. Of course,

there is a large arbitrariness in such an extension, but the
results are independent of the particular values of δi(t)
for t > tK . The reason is that, being analytic and without
zeros in the t-plane cut along (tπ,∞), and with regular val-
ues on the boundary, O2(t) and O3(t) are outer functions,
so by multiplying a class of functions with them, the class
is not changed [?]. By construction, the phase of Oi(t+ iε)
coincides with δi(t) . We also use the notation Oi(z) to de-
note these functions in terms of the variable z defined in
(??). The functions Oi(z) are analytic in |z| < 1, excepted
for a cut along the segment (−1, z0), where the phase of
Oi(z − iε) is equal to δi(t(z)) (we recall that the confor-
mal transformation (??) maps the upper half t-plane onto
the lower semidisk in the z-plane). We define the set of
functions fi(z) as

fi(z) = Fi(z)[Oi(z)]−1 , i = 1, .. , 5 , (36)

where Fi(z) are the form factors defined in (??). From (??)
it is easy to see that the complex phases of the form factors
F2(z) and F3(z) along the cut (−1 , z0) are compensated
by the phases of the Omnès functions Oi(z). Therefore, all
the functions fi(z) are analytic of real type inside the unit
disk |z| < 1. By introducing (??) in the L2 norm condition
(??) we have

1
2π

5∑
i=1

2π∫
0

|wi(ζ)Oi(ζ)fi(ζ)|2dθ =

1
2π

5∑
i=1

2π∫
0

|wi(ζ)ωi(ζ)fi(ζ)|2dθ ≤ 1 , ζ = exp(iθ) ,(37)

where wi(z) are the outer functions defined in (??) and
(??), and ωi(z) are additional outer functions which sat-
isfy the relations

|ωi(ζ)| = |Oi(ζ)| , ζ = exp(iθ) , i = 1, ...5 . (38)

They can be calculated in terms of their modulus on the
boundary using the standard formula [?] given in (??),
which is equivalent to

ωi(t) = exp


√

tK − t

π

∞∫
tK

ln |Oi(t′)|√
t′ − tK(t′ − t)

dt′


 ,

i = 1, ....5 . (39)

It is convenient to introduce the new functions gi(z) as

gi(z) = wi(z)ωi(z)fi(z) = Ωi(z)Fi(z) ,

i = 1, .. , 5 ,
(40)

where
Ωi(z) = wi(z)ωi(z)[Oi(z)]−1 . (41)

Now, in terms of gi(z) the inequality (??) takes the canon-
ical form

1
2π

5∑
i=1

2π∫
0

|gi(ζ)|2dθ ≤ 1 , ζ = exp(iθ) . (42)
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By construction the functions gi(z) are analytic inside the
disk |z| < 1 and can be expanded as power series

gi(z) =
∞∑

n=0

cn,iz
n , i = 1, ..5 , (43)

with real coefficients cn,i = c∗n,i. By inserting these expan-
sions in (??) we obtain

5∑
i=1

∞∑
n=0

c2n,i ≤ 1 . (44)

As we discussed in Sect. 2, the generalization of the
Ademollo-Gatto theorem proposed by Sirlin requires the
vanishing of the first derivatives at t = 0 of the function
∆(t) defined in (??), in the exact chiral limit. In order to
test the consistency of this condition, let us put

∆(k)(0) = sk , k = 1, ....K , (45)

where the derivatives are with respect to t, and sk are
given numbers of the order of magnitude of chiral symme-
try breaking [?]. Using (??) we write ∆(t) as

∆(t) =
5∑

i=1

ai [Ωi(z)]−1 gi(z) , (46)

where

a1 =
1
2
, a2 =

1
2
, a3 = 1 , a4 = −1 , a5 = 0 . (47)

Therefore the derivatives entering (??) become

∆(k)(0) =
5∑

i=1

ai

k∑
n=0

Cn
k

[
dn[Ωi(z)]−1

dtn

]
t=0

×
[
dk−ngi(z)

dtk−n

]
t=0

, (48)

and finally the conditions (??) can be written as

5∑
i=1

k∑
n=0

b
(i)
kncn,i = sk , k = 1, ..,K , (49)

where the numbers b(i)kn can be obtained in a straightfor-
ward way using (??), the definition (??) of the functions
Ωi(z) and the connection (??) between the variables t and
z. Of course, for each k only the Taylor coefficients cn,i

with n ≤ k contribute to ∆(k)(0).
Our objective is to test the consistency of the relations

(??) with the inequality (??) provided by the dispersive
formalism. The problem can be easily solved, since we ex-
pressed both these conditions in terms of the Taylor coef-
ficients cn,i, transforming in this way a functional problem
into an algebraic one. We notice that the first coefficients

c0,i = gi(0) = Ωi(0)Fi(0) , i = 1, .. , 5 (50)

can be computed using the relations (??) and (??). The
remaining coefficients cn,i, n ≥ 1 are free. The relations
(??) can be viewed as a set of N linear constraints for
these coefficients, which satisfy in addition the quadratic
condition (??). A simple way to test the consistency of
these relations for a given set of numbers sk, k = 1, .. , K
is to define the quantity

µ2
0 = min

cn,i

5∑
i=1

∞∑
n=0

c2n,i , (51)

where the minimization is with respect to the coefficients
cn,i, n ≥ 1 , i = 1, ....5 which satisfy the set of linear con-
ditions (??). It is clear that, if the minimal value µ2

0 is
greater than one, the conditions (??) and (??) can not be
satisfied simultaneously, while if µ2

0 is less than one the
conditions are satisfied by at least one set of coefficients
cn,i. A more detailed reasoning along these lines [?] shows
that the inequality

µ2
0 ≤ 1 , (52)

is a necessary and sufficient condition for the consistency
of the relations (??) and (??).

In order to solve the minimization problem (??) with
the constraints (??) we apply the technique of Lagrange
multipliers. The Lagrangean of the problem is:

L =
5∑

i=1

c20,i +
5∑

i=1

∞∑
n=1

c2n,i

−2
K∑

k=1

λk

[
5∑

i=1

b
(i)
k0c0,i +

5∑
i=1

K∑
n=1

b
(i)
kncn,i − sk

]
, (53)

where λk, k = 1, ..K are Lagrange multipliers. In (??) we
indicated separately the coefficients c0,i which are known.
Moreover, for convenience we extended the sum over n in
the last term up to n = K, setting b(i)kn = 0 for n > k. The
Lagrangean L is a convex function of the coefficients cn,i,
its minimal value being given by the equations

∂L
∂cn,i

= 0 , n = 1, ...∞ ; i = 1, ..5 . (54)

The solution of these equations is

cn,i =
K∑

k−1

λkb
(i)
kn , n ≤ K , i = 1, ..5 ,

cn,i = 0 , n ≥ K + 1, i = 1, ..5 . (55)

By introducing this solution in the conditions (??) we ob-
tain the following system of equations for the Lagrange
multipliers λk:

K∑
m=1

Ukmλm = s̃k , k = 1, ...K , (56)

where the matrix U is defined as

Ukm =
5∑

i=1

K∑
j=1

b
(i)
kj b

(i)
mj , k,m = 1, ...K , (57)
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and the numbers s̃k are related to the derivatives of the
Sirlin function sk defined in (??) by

s̃k = sk −
5∑

i=1

b
(i)
k0c0,i , k = 1, ...K . (58)

The system (??) has the solution

λk =
K∑

m=1

(U−1)kms̃m , k = 1, ...K , (59)

where U−1 is the inverse of the matrix U . By introducing
these expressions in (??) we obtain the optimal coefficients
cn,i for 1 ≤ n ≤ K as

cn,i =
K∑

m=1

s̃m

K∑
k=1

(U−1)kmb
(i)
kn ,

n = 1, ...K ; i = 1, ...5 .

(60)

With these coefficients for n ≤ K and cn,i = 0 for n ≥
K +1 according to (??) we obtain after a straightforward
calculation the following compact form the solution µ2

0 of
the minimization problem (??):

µ2
0 =

5∑
i=1

c20,i +
K∑

j,k=1

(U−1)jks̃j s̃k , (61)

and the consistency condition (??) becomes

5∑
i=1

c20,i +
K∑

j,k=1

(U−1)jks̃j s̃k ≤ 1 . (62)

We recall that in this inequality the coefficients c0,i are
known according to (??) from the normalization of the
form factors at t = 0, and the matrix U can be explicitely
computed using (??) and the numbers b(i)kn appearing in
(??). We mention that these numbers include the physi-
cal input on unitarity and QCD , contained in the outer
functions wi(z), and the phase of the kaon form factors
along the unphysical region entering the outer functions
Oi(t) and ωi(t). As for the quantities s̃k, they are related
to the derivatives sk of the Sirlin function, according to
(??). With this input the inequality (??) is a constraint
for the derivatives sk of the Sirlin function ∆(t) at t = 0,
defined in (??).

For illustration we evaluated the quantity µ2
0 for K =

3, using the value s1 = 0.0033 fm2 obtained recently in [?]
and several choices for the higher derivatives s2 and s3.
A few results are listed in Table 1. The sets of values for
which µ2

0 is less than 1 are consistent with the dispersive
bounds (in particular, this is true for s2 = s3 = 0 and
small deviations from these values, showing that Sirlin’s
theorem is verified within the present formalism). We give
also some pairs (s2, s3) for which the quantity µ2

0 is greater
than one, and therefore the inequality (??) is violated.
The results show an adequate consistency between the

Table 1. The quantity µ2
0 defined in (??) for s1 = 0.0033 fm2

[?] and several values of the derivatives s2 and s3 of the Sir-
lin function. The values consistent with QCD and analyticity
correspond to µ2

0 ≤ 1

s2 (fm4) s3 (fm6) µ2
0

0.0 0.0 0.04
0.1 −0.1 0.69
0.1 0.1 0.06

−0.1 0.1 0.97
−0.01 0.3 1.07
0.05 −0.3 1.26
−0.1 0.5 4.71

requirements of Sirlin’s theorem on one hand, and QCD
and analyticity on the other. However, in order to exploit
the dispersive inequalities we had to adopt a model for the
phase of the kaon form factors along the unphysical region.
The presence of the unphysical cut reduces therefore the
model independence of the conclusions.

4 Bounds on the Taylor coefficients
of the pion form factor at zero momentum

In this section we shall apply the dispersive formalism to
the pion electromagnetic form factor Fπ(t). We consider
the Taylor expansion of this function around the origin
t = 0 [?]

Fπ(t) = 1 +
1
6
r2π t+ c t2 + d t3 + ..... , (63)

where r2π is the radius of the charge distribution. In CHPT
the calculation of the Taylor coefficients requires the eval-
uation of higher pion loops, which introduce arbitrary
renormalization constants [?], [?]. One-loop CHPT [?] pre-
dicts c ≈ 0.626 GeV−4, d ≈ 2.30 GeV−6. At two - loop
level the coefficient c can not be calculated as it depends
on an arbitrary renormalization constant, and
d = 4.1 GeV−6 [?]. A fit of the ALEPH data [?] on the
hadronic τ decay rate with a Gounaris-Sakurai formula
[?] (equivalent to the Padé version of the one-loop CHPT)
gives c = 3.72 GeV−4, d = 9.80 GeV−6. Similar values c =
3.9 GeV−4, d = 9.70 GeV−6 were obtained in [?] by usual
dispersion relations. Other values proposed in the litera-
ture are: c = 4.1 GeV−4 [?], and c = −7.5 GeV−4, d =
62.5 GeV−6 [?].

In what follows we shall prove that the dispersive for-
malism imposes nontrivial constraints on the Taylor ex-
pansion (??), especially when combined with additional
information about the form factor along a part of the time
like region. For the present purpose we keep only the con-
tribution of the pion form factor in the unitarity inequality
(??), neglecting the positive terms due to the K mesons.
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In this case the inequality (??) becomes

1
2π

2π∫
0

|wπ(ζ)Fπ(ζ)|2dθ ≤ 1 , ζ = exp(iθ) , (64)

where the outer function wπ(z) is

wπ(z) =
(1 − dπ)2

16

√
1

6πtπΠ ′
elm(−Q2)

(1 + z)2
√

1 − z

(1 − zdπ)2
,

(65)

with dπ = d1 defined in (??). If we use as an alternative
input the lower bound on the hadronic contribution to the
muon anomaly, the function wπ(z) is

wπ(z) =
1
16

√
1

6πtπa
(h)
µ

(1 + z)2
√

1 − z wK(z) , (66)

where wK(z) was defined below (??). We consider now the
function

g(z) = wπ(z)Fπ(z) , (67)

which is real analytic in the unit disk |z| < 1 and can be
expanded as

g(z) =
∞∑

n=0

cnz
n , (68)

with real coefficients cn = c∗n. Then the condition (??)
becomes ∞∑

n=0

c2n ≤ 1 . (69)

A constraint on the first N coefficients appearing in the
Taylor expansion (??) is immediately obtained by noticing
that (??) implies

N∑
n=0

c2n ≤ 1 . (70)

The first N coefficients cn can be expressed in a straight-
forward way in terms of the first N Taylor coefficients ap-
pearing in (??) . The explicit relations are obtained easily
using the definition (??) and the conformal mapping (??).
For instance, c0 = wπ(0), c1 = w′

π(0) − 2r2πtπwπ(0)/3 etc,
where the function wπ(z) is defined in (??) and the deriva-
tives are with respect to z. If we use as input the lower
bound on the muon anomaly, the function wπ(z) has the
expression (??).

In particular, for N = 3 and a fixed value of the charge
radius r2π the inequality (??) defines an allowed domain
in the plane of the coefficients c and d appearing in the
Taylor expansion (??). In Fig. 1, the interior of the larger
ellipse is the domain obtained using the standard value
r2π = 0.42 fm2 and the QCD condition (??). This domain
is very large, but one can see a certain correlation among
the values of the Taylor coefficients. This feature becomes
more stringent when higher derivatives of the form factor
are taken into account. For comparison we indicated also
in Fig. 1 the allowed domain obtained from the condition

Fig. 1. Allowed domains for the Taylor coefficients c and d of
the pion electromagnetic form factor obtained from (??). The
large ellipse is obtained using as input the QCD expansion of
the polarization function, the small one using the lower bound
on the muon hadronic anomaly

(??) on the muon anomaly. This domain is smaller, and in
particular it excludes a pair of values for c and d proposed
recently in [?]. In the next subsections we shall improve
the above bounds by implementing informations about the
phase and the modulus of the pion form factor along a part
of the unitarity cut.

4.1 Improved bounds using the phase
of the form factor along a part of the cut

According to Watson theorem [?], along the elastic re-
gion tπ < t < 16m2

π the phase of the pion electromag-
netic form factor coincides with the phase δ11(t) of the
L = 1 , I = 1 partial wave amplitude of the ππ scattering.
This amplitude was calculated in the frame of CHPT up
to two loops [?]. The expansion upon chiral loops is as-
sumed to describe correctly the phase up to ≈ 0.400 GeV.
On the other hand, precise experimental data are available
above ≈ 0.600 GeV [?]. New planned experiments on Kl4
decay [?], [?], [?] will provide accurate information about
the low energy ππ scattering amplitudes.

It is of interest to incorporate in the dispersive formal-
ism for the pion form factor the additional information
on the phase. Unlike the situation encountered in Sect. 3,
where the knowledge of the phase allowed us to remove
the unphysical cut below the unitarity threshold, in the
present case we must implement the phase along a part of
the unitarity cut. We treat the problem adapting mathe-
matical techniques used in [?]-[?]. We assume that

Arg[Fπ(t+ iε)] = δ11(t) , tπ ≤ t ≤ tin , (71)

where δ11(t) is a known function and tin denotes the thresh-
old of the inelastic cut or a certain point up to which the
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phase is supposed to be known. As we shall discuss below,
the technique can be easily adapted to more general situa-
tions, for instance when the phase is given along the range
t1 ≤ t ≤ tin with t1 > tπ, or along a region consisting of
two disjoint parts, tπ ≤ t ≤ t1 and t2 ≤ t ≤ tin, with
t2 > t1.

We first express the condition (??) in the variable z
defined in (??). To this end we recall that the branch point
tπ is mapped onto the point z = −1, and the upper edge
of the unitarity cut in the t plane becomes the lower unit
semicircle in the z plane. We denote by zin = exp(iθin)
the image of the point tin − iε in the z-plane , and let
Γ = {θ : θin < θ < 2π − θin}. Then the condition (??)
becomes

lim
r→1

Arg[Fπ(reiθ)] = −δ11(θ) , θin ≤ θ ≤ π ,

lim
r→1

Arg[Fπ(reiθ)] = δ11(θ) , π ≤ θ ≤ 2π − θin , (72)

where we denoted δ11(θ) = δ11(t(θ)), with t(θ) = tπ +
tπcotg2(θ/2) as follows from (??). We took into account
the fact that the form factor is an analytic function of
real type, which means that its phase is an odd function
of θ, i.e. it satisfies the relation δ11(θ) = −δ11(2π − θ). It
is useful to note that the same property holds also for the
imaginary part of the form factor, while the real part and
the modulus are even functions of θ.

In what follows we shall derive the allowed domain
for the Taylor coefficients of the expansion (??), taking
into account the inequality (??) provided by the dispersive
formalism, and the additional relations (??). As usual, the
information about the phase is implemented by means of
an Omnès function [?]. We can use the definition given in
(??), or equivalently we define

Oπ(z) = exp


 i
π

2π∫
0

dθ
δ̄11(θ)

1 − ze−iθ


 , (73)

where δ̄11(θ) is a Lipschitz continuous function such that
δ̄11(θ) = −δ11(θ) for θin < θ < π , δ̄11(θ) = δ11(θ) for π <
θ < π+ θin, δ̄11(θ) being arbitrary outside Γ . We shall see
below that the results are independent on the choice of
δ̄11(θ) outside Γ . Using the Plemelj-Privalov relation [?]

lim
r→1

1
π

2π∫
0

dθ′ F (θ′)
1 − rei(θ−θ′) = F (θ) +

1
π

2π∫
0

dθ′ F (θ′)
1 − ei(θ−θ′) ,

(74)
where the last integral denotes the Principal Value, one
can show that along the interval Γ the phase of the func-
tion Oπ coincides with the phase of the form factor. There-
fore, by multiplying Fπ(z) with [Oπ(z)]−1 the phases com-
pensate each other and the product is real along the elas-
tic part of the cut. In the variable z this condition has the
form

Im lim
r→1

[
1

Oπ(reiθ)
Fπ(reiθ)

]
= 0 , θ ∈ Γ . (75)

By recalling the definition (??) of the function g(z) and
its power expansion (??), we write the condition (??) in
the form

Im lim
r→1

[
1

wπ(reiθ)Oπ(reiθ)
g(reiθ)

]
=

∞∑
n=0

cn Im lim
r→1

[
[W (reiθ)]−1 rn einθ

]
= 0 , θ ∈ Γ , (76)

where W (ζ) is defined as

W (ζ) = wπ(ζ)Oπ(ζ) , ζ = eiθ . (77)

The allowed domain of the Taylor coefficients of the pion
form factor, which satisfy the conditions (??) and (??)
can be found, like in Sect. 3, by means of an optimization
problem. We first recall that the conditions (??) and (??)
were written in the equivalent forms (??) and (??) respec-
tively, in terms of the Taylor coefficients cn. We consider
then the quantity

µ2
0 = min

cn

∞∑
n=0

c2n , (78)

where the minimization is with respect to the coefficients
cn which satisfy the condition (??). As in Sect. 3 one can
show that the inequality (??) is a necessary and suffi-
cient condition for the consistency of the relations (??)
and (??).

We solve the constrained minimization problem (??)
with the generalized Lagrange theory of optimization,
based on Hahn-Banach theorem [?]. The Lagrangean is

L =
∞∑

n=0

c2n +
2
π

∞∑
n=0

cn lim
r→1

∫
Γ

λ(θ) |W (θ)|

×Im
[
[W (θ)]−1 rneinθ

]
dθ , (79)

where the function λ(θ) is a generalized Lagrange multi-
plyer [?]. We can assume without losing generality that
it is an odd function, since its product with another odd
function (the imaginary part of an analytic function of
real type) is integrated along a symmetric interval Γ . We
denoted for simplicity W (θ) = W (exp(iθ)). The numeri-
cal factor in front of the integral in (??) and the modulus
|W (θ)| inside the integral were introduced explicitely for
convenience.

We assume now that the first N coefficients cn have
prescribed values, and perform the minimization of the
Lagrangean with respect to the remaining coefficients cn,
n ≥ N + 1. The minimum condition

∂L
∂cn

= 0 , n ≥ N + 1 (80)

gives the optimal coefficients

cn = − 1
π

lim
r→1

∫
Γ

λ(θ) |W (θ)| Im [[W (θ)]−1 rn einθ
]
dθ ,

n ≥ N + 1 . (81)
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This expression can be written equivalently as

cn = − i

π
lim
r→1

∫
Γ

λ(θ) |W (θ)| [W ∗(θ)]−1 rn e−inθdθ ,

n ≥ N + 1 , (82)

where we added a term which has a vanishing contribution
by parity arguments.

In order to find the Lagrange multiplier λ(θ) we in-
troduce the optimal coefficients cn in the constraint (??).
Recalling that the first N coefficients cn are assumed to
have prescribed values, we write the condition (??) in the
form

N∑
n=0

cn Im
[

einθ

W (θ)

]
− Im lim

r→1

[
i

π

1
W (θ)

×
∫
Γ

λ(θ′)
|W (θ′)|
W ∗(θ′)

ei(N+1)(θ−θ′)

1 − rei(θ−θ′) dθ′


 = 0 , θ ∈ Γ . (83)

It is useful to write

W (θ) = |W (θ)|eiΦ(θ) , (84)

where from (??) it follows that

Φ(θ) = φ(θ) + δ̄11(θ) . (85)

Here φ(θ) is the phase of the outer function wπ(z), and
δ̄11(θ) is connected to the phase of the pion form factor
as explained below (??). By inserting (??) in the relation
(??) and applying the Plemelj-Privalov relation (??) we
obtain after a straightforward calculation the equation

N∑
n=0

cn sin[nθ − Φ(θ)] − λ(θ) +
1
2π

×
∫
Γ

λ(θ′)
sin
[(
N + 1

2

)
(θ − θ′) − Φ(θ) + Φ(θ′)

]
sin
[

θ−θ′
2

] dθ′

= 0 , θ ∈ Γ , (86)

where the last integral is defined as the Principal Value.
We obtained therefore a singular integral equation for the
Lagrange multiplier λ(θ). If the phase Φ(θ) is Lipschitz
continuous, the equation is of Fredholm type and can be
solved by standard techniques. After solving this equation,
the minimal norm µ2

0 can be computed by inserting in (??)
the prescribed values cn for n ≤ N and the optimal values
(??) of cn for n ≥ N + 1 . Taking into account the fact
that cn = c∗n we obtain

µ2
0 =

N∑
n=0

c2n + lim
r→1

1
π2 lim

r→1

∫
Γ

dθ
∫
Γ

dθ′λ(θ)λ(θ′)
|W (θ)|
W ∗(θ)

×|W (θ′)|
W ∗(θ′)

ei(N+1)(θ−θ′)

1 − rei(θ−θ′) . (87)

By applying the Plemelj-Privalov relation (??) and using
the integral equation (??) satisfied by the function λ(θ),
we arrive finally at the expression

µ2
0 =

N∑
n=0

c2n +
N∑

n=0

cn
π

∫
Γ

λ(θ) sin[nθ − Φ(θ)]dθ . (88)

Using the fact that λ(θ) and Φ(θ) are odd functions, the
integral equation (??) can be written in the form

N∑
n=0

cn sin[nθ − Φ(θ)] − λ(θ)

+
1
2π

π∫
θin

λ(θ′)

[
sin
[(
N + 1

2

)
(θ − θ′) − Φ(θ) + Φ(θ′)

]
sin
[

θ−θ′
2

]

− sin
[(
N + 1

2

)
(θ + θ′ − 2π) − Φ(θ) − Φ(θ′)

]
sin
[

θ+θ′
2 − π

]
]

dθ′ = 0 ,

θin ≤ θ ≤ π , (89)

where
Φ(θ) = φ(θ) − δ11(θ) , θin ≤ θ ≤ π . (90)

Moreover, the expression (??) of µ2
0 can be written as

µ2
0 =

N∑
n=0

c2n +
N∑

n=0

2 cn
π

π∫
θin

λ(θ) sin[nθ − Φ(θ)]dθ . (91)

We notice that the first term in (??) represents the uncon-
strained minimum, obtained from (??) if the coefficients
cn for n ≥ N + 1 were free. The second term in the ex-
pression of µ2

0 is positive and represents the improvement
brought by the knowledge of the phase of the form factor
along the region tπ < t < tin.

It is important to emphasize that only the values of
Φ(θ) along the interval Γ are required in the integral equa-
tion. Also, the modulus of the outer function does not
appear (it was absorbed in the definition of the Lagrange
multiplier λ(θ)), which means that the results are indepen-
dent of the choice of the function δ̄11 outside the interval
Γ .

The equations (??) - (??) provide a simple numeri-
cal procedure for finding the allowed domain of the co-
efficients of the Taylor expansion (??): one starts with a
set of values for the first N Taylor coefficients. Using the
relations (??) and (??) one finds the corresponding co-
efficients cn, which enter the integral equation (??). The
solution λ(θ) of this equation is then used in (??) to evalu-
ate the quantity µ2

0. Recalling that the allowed domain of
the Taylor coefficients is described by the inequality (??),
the values taken as input are accepted or rejected if µ2

0 is
less or greater than unity, respectively.

From the above derivation the generalization to the
case where the region Γ consists of two disjoint subinter-
vals Γ1 and Γ2 is straightforward. This case is of interest
when using the phase given by CHPT along Γ1 = {t :
tπ < t < (0.400 GeV)2} and the experimental data on
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Γ2 = {t : (0.600 GeV)2 < t < tin}. The resulting equa-
tions have the same form, the Lagrange multiplier being
defined on Γ1 ∪ Γ2.

To illustrate how the bounds on the Taylor coefficients
c and d are improved by the knowledge of the phase, we
took the expression [?]

δ11(t) = arctg
[
mρΓρ(t)
m2

ρ − t

]
, (92)

where Γρ(t) was defined in (??). At low energies above the
threshold, this phase coincides with the one loop CHPT
expression [?]

δ11(t) =
t

96πf2
π

(
1 − 4m2

π

t

)3/2

, (93)

while for t ≥ (0.500GeV)2 it is in very good agreement
with the experimental data [?]. We assumed that the phase
of the pion form factor coincides with (??) along the re-
gion tπ < t < tin, with tin = 0.8 GeV2, which corresponds
to θin = 0.6321. As input for the bounds we use the OPE
expansion of the polarization amplitude, which led to the
domain represented by the interior of the large ellipse in
Fig. 1. In this case the outer function wπ(z) is given in (??)
and the function Φ(θ) defined in (??) has the expression

Φ(θ) =
5θ − π

4
+ arctg

[
2d1 sin θ − d2

1 sin 2θ
1 − d1 cos θ + d2

1 cos 2θ

]
− δ11(θ) ,

θin ≤ θ ≤ π , (94)

with d1 defined in (??). In Fig. 2 the interior of the ellipse
is the allowed domain in the plane (c, d), for r2π = 0.42 fm2.
Compared with the large ellipse in Fig. 1 one can see the
considerable improvement brought by the knowledge of
the phase along a part of the unitarity cut. A more re-
alistic calculation using CHPT along an interval Γ1 and
the experimental data on δ11(t) along another interval Γ2
is of interest and will provide precise model independent
bounds on the Taylor coefficients.

4.2 Improved bounds using information about the
phase and the modulus along a part of the cut

The modulus of the pion form factor along a part of the
cut is known experimentally from the rate of e+e− an-
nihilation into pions [?] and the hadronic τ decay [?].
High precision data are available especially in the range
0.3 GeV2 < t < 0.9 GeV2. In this subsection we derive
the allowed domain of the Taylor coefficients by includ-
ing some information about the modulus of the pion form
factor along a part of the cut.

It is a known mathematical fact that if the modulus
and the phase of an analytic function are known exactly
along a part of the boundary, then the function is in prin-
ciple uniquely determined. Explicit formulas for recaptur-
ing an analytic function belonging to a certain class, from
its restriction along a part of the boundary are available

Fig. 2. Improved domain for the Taylor coefficients c and d of
the pion electromagnetic form factor, using the phase along a
part of the boundary

[?], [?] (see also [?] for explicit expressions and further
references). These expressions are however very unstable
numerically, reflecting the fact that the analytic continua-
tion is an ill-posed problem [?]. More exactly, the formulas
give the correct analytic continuation if the input values
are known with infinite accuracy, but they lead to arbi-
trary predictions if these values are affected by errors.

In what follows we shall show that even a nonoptimal
use of the input information about the phase and the mod-
ulus leads to a considerable improvement of the bounds on
the Taylor coefficients. Unlike the case considered in the
previous subsection, where the phase could be given along
several disjoint intervals, the method described below re-
quires the knowledge of the phase along the whole range
tπ ≤ t ≤ tin. We start by writing the inequality (??) in
the form

1
48π2

∞∫
tin

dt
(t+Q2)2

(
1 − 4m2

π

t

)3/2

|Fπ(t)|2 ≤ M(Q2) ,

(95)
where

M(Q2) = Π ′
elm(−Q2) − 1

48π2

×
tin∫

tπ

dt
(t+Q2)2

(
1 − 4m2

π

t

)3/2

|Fπ(t)|2 . (96)

Assuming that the modulus |Fπ(t)| is known along tπ ≤
t ≤ tin, the quantity M(Q2) can be evaluated numerically.
To be conservative, one can use a lower bound on the
modulus, which does not spoil the inequality (??) and
leads to a larger allowed domain for the Taylor coefficients.
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In order to incorporate the information about the
phase we use the Omnès function defined in (??), which
can be written equivalently in the t variable as

Oπ(t) = exp


 t
π

∞∫
tπ

δ̄11(t′)
t′(t′ − t)

dt′


 . (97)

The properties of the function δ̄11(t) were discussed below
(??), and we use it in order to remove the part of the cut
below t = tin. More precisely, writing as in (??)

Fπ(t) = fπ(t)Oπ(t) , (98)

we see that the function fπ(t) is real on the real axis below
tin, since the phase of the form factor along tπ ≤ t ≤ tin
is compensated by the phase of Oπ. Therefore fπ(t) is
analytic in the t-plane cut for t > tin, and satisfies on the
cut the condition

1
48π2

∞∫
tin

dt
(t+Q2)2

(
1 − 4m2

π

t

)3/2

|fπ(t)|2|Oπ(t)|2

≤ M(Q2) , (99)

which follows from (??). But this condition can be sim-
ply exploited with the standard techniques described in
Sect. ??. We first map the t plane cut for t > tin onto the
unit disk in the z-plane, using the conformal mapping

z(t) =
√
tin − t− √

tin√
tin − t+

√
tin

. (100)

We define as in (??) the outer function

ωπ(t) = exp


√

tin − t

π

∞∫
tin

ln |Oπ(t′)|√
t′ − tin(t′ − t)

dt′


 , (101)

such that |ωπ(t)| = |Oπ(t)| for t > tin, and the outer
function similar to (??)

w̃π(z) =
(1 − d̃π)2

16

√
1

6πtπM(Q2)
(1 + z)2

√
1 − z

(1 − zd̃π)2
,

(102)
with

d̃π =

√
tin +Q2 − √

tin√
tin +Q2 +

√
tin

. (103)

By introducing a new function g̃(z), defined as

g̃(z) = w̃π(z)ωπ(z)fπ(z)
= w̃π(z)ωπ(z)[Oπ(z)]−1Fπ(z) , (104)

the inequality (??) takes the canonical form

1
2π

2π∫
0

|g̃(ζ)|2dθ ≤ 1 , ζ = exp(iθ) . (105)

Fig. 3. Improved domain for the Taylor coefficients c and d of
the pion electromagnetic form factor, using the phase and the
modulus along a part of the boundary

By construction the function g̃(z) is analytic in the disk
|z| < 1 and can be expanded as

g̃(z) =
∞∑

n=0

c̃nz
n , (106)

where the coefficients c̃n satisfy the inequality

∞∑
n=0

c̃2n ≤ 1 , (107)

which follows from (??). The first N coefficients c̃n are
connected in a straightfoward way through (??) to the
firstN Taylor coefficients of the form factor Fπ(t) at t = 0.
Therefore, the inequality

N∑
n=0

c̃2n ≤ 1 , (108)

which follows from (??), defines an allowed domain in the
plane of these Taylor coefficients. In principle this domain
can be further reduced: indeed, in addition to the bound-
ary condition (??), the function fπ defined in (??) has
known error-affected values along the region tπ ≤ t ≤ tin,
where it is holomorphic. The inclusion of this additional
information is not trivial, and we will not treat this prob-
lem here, using the simple inequality (??). In particular,
for N = 3 and r2π fixed, this inequality gives the allowed
domain of the parameters c and d of the expansion (??).

In a numerical application we used the same phase
δ11(t) as in the preceeding subsection and the modulus
|F (t)| from the ALEPH data [?]. Using Q2 = 2 GeV2 and
tin = 0.8 GeV2, we obtain for the quantity M(Q2) defined
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in (??) the estimate M(Q2) = 0.00689GeV−2. The result
is not sensitive to the experimental uncertainties above
the threshold tπ, due to the phase space factor in the uni-
tarity integral appearing in (??). Reducing the value of
|F (t)| along tπ ≤ t ≤ tin by 5% leads to an increase of
M(Q2) by about 3% and to bounds on the coefficients
c and d weaker by about 2%. The interior of the ellipse
shown in Fig. 3 indicates the allowed domain obtained in
this conservative situation.

The combined information on the phase and the mod-
ulus is seen to restrict in an impressive way the values
of the Taylor coefficients of the pion form factor. The al-
lowed range of c is (0.25 , 7.57), and for each c the range
of the values of d is very narrow. For instance, for c = 3.85
the parameter d is restricted to the interval (9.02 , 11.30).
The values c = −7.5 GeV−4, d = 62.5 GeV−6 adopted in
[?] are outside the allowed domain. We recall that these
strong bounds are obtained with no specific parametriza-
tion and without any assumption about the high energy
behaviour of the form factor.

5 Conclusions

In the present paper we investigated the form factors of
the light pseudoscalar mesons in a dispersive formalism
which uses as input the OPE expansion of the QCD po-
larization functions, combined with hadronic unitarity and
analyticity. We derived constraints on the size and shape
of the form factors, which are of interest in particular for
testing the low energy predictions of CHPT. Generaliza-
tions of the original mathematical techniques, suitable for
including additional informations about the form factors
were developed.

In Sect. 3 we performed a test of Sirlin’s theorem [?],
[?], which requires the vanishing of a certain combination
of form factors which is free of arbitrary renormalization
constants in CHPT at t 6= 0. To this end we treated simul-
taneously in the dispersive formalism all the electroweak
form factors of the π and K mesons. A difficulty is the
large unphysical cut of the kaon electromagnetic form fac-
tors, which spoils the model independence of the results.
This is in contrast with the case of heavy mesons, where
the weak form factors of the ground state and of the ex-
cited ones have very close branch points and the unphysi-
cal cuts are well approximated by a few number of poles.
In that case the simultaneous treatment of several form
factors related among them by heavy quark symmetry led
to strong model independent bounds near zero recoil [?],
[?], [?]. In the present paper we adopted for the phase of
the kaon form factors along the unphysical cut a model
inspired from the resonance chiral effective theory, which
turned out to be consistent with QCD and Sirlin’s the-
orem. This subsection has however mainly a pedagogical
character, showing how to combine in an optimal way the
dispersive formalism with the Omnès functions and the
technique of Lagrange multipliers for the constraints at
interior points.

The main results are presented in Sect. 4, where we de-
rived model independent constraints on the Taylor coeffi-

cients of the pion electromagnetic form factor. We showed
how to implement in the dispersive formalism the knowl-
edge of the phase of the form factor along a part of the uni-
tarity cut, even when this part consists of several disjoint
intervals. To this end we applied the Lagrange theory for
functional optimization, which led to an integral equation
for the generalized Lagrange multiplier. The knowledge
of the phase considerably improves the simple bounds on
the higher Taylor coefficients yielded by the dispersive for-
malism. In the present paper we illustrated this statement
using a realistic model of the phase [?], which reproduces
the one-loop CHPT expression [?] below 0.400 GeV and
the present experimental data [?] above 0.500 GeV. The
accurate data provided on the phase δ11 by the future Kl4
experiments [?],[?] will be a precious input to the formal-
ism. In Sect. 4 we obtained also improved constraints on
the Taylor coefficients if both the phase and the modu-
lus of the form factor are given along a part of the cut,
even if this information is used in an nonoptimal way.
The interior of the ellipse shown in Fig. 3 represents the
allowed domain of the coefficients c and d entering the
Taylor expansion (??), obtained with the phase discussed
above and the modulus from the hadronic τ decay rate
[?] along tπ ≤ t ≤ 0.8 GeV2. Once this input informa-
tion is adopted, the bounds are model independent, since
they are not based on specific parametrizations and are
free of any assumption about the high energy behaviour
of the form factors. It is of interest to apply the techniques
described in this paper to the higher Taylor coefficients.
The results obtained so far suggest that strong correla-
tions among these coefficients are expected, leading to re-
strictions on the arbitrary renormalization constants of
CHPT.
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